Sinussatz. Den Sinussatz kannst du benutzen, um fehlende Stücke eines Dreiecks zu berechnen. Zum Beispiel, wenn zwei Seitenlängen und ein gegenüber liegender Winkel oder eine Seitenlänge und zwei Winkel gegeben sind. Das Dreieck muss dabei nicht rechtwinklig sein!Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete (Kathete, die dem Winkel gegenüberliegt) zur Länge der Hypotenuse (Seite gegenüber dem rechten Winkel). Der Kosinus ist das Verhältnis der Länge der Ankathete (das ist jene Kathete, die einen Schenkel des Winkels bildet) zur Länge der Hypotenuse.Dann gelten folgende Zusammenhänge:
- sin(α)= Gegenkathete / Hypotenuse.
- cos(α)= Ankathete / Hypotenuse.
- tan(α)= Gegenkathete / Ankathete.
Für was braucht man den Sinussatz : Mit dem Sinussatz berechnest Du fehlende Seitenlängen oder Winkel in einem beliebigen Dreieck, solange Du nur „Seiten-Winkel-Paar“ und eine weitere Größe kennst.
Wann benutzt man den Cosinus
Mit dem Kosinus kannst du rechnen, wenn du zwei der drei Größen, Winkel, Ankathete und Hypotenuse gegeben hast und die dritte suchst. Das Vorgehen ist also ähnlich wie beim Sinus, nur mit der Ankathete anstatt der Gegenkathete eines Winkels.
Wie viel ist der Sinus von 30 Grad : Nach der Definition ist der Sinus von 30 Grad gleich ½, und der Kosinus von 30 Grad ist √ 3/2.
Mit dem Kosinus kannst du rechnen, wenn du zwei der drei Größen, Winkel, Ankathete und Hypotenuse gegeben hast und die dritte suchst. Das Vorgehen ist also ähnlich wie beim Sinus, nur mit der Ankathete anstatt der Gegenkathete eines Winkels.
Mit dem Cosinus kannst du fehlende Winkel oder Seiten in einem rechtwinkligen Dreieck bestimmen. Dabei ist der Cosinus das Verhältnis zweier Seiten: der Ankathete und Hypotenuse des Dreiecks. Mit einem geometrischen Trick kannst du die Definition auf den Einheitskreis erweitern.
Wann nimmt man Sinus Kosinus und Tangens
Der Sinus, der Cosinus und der Tangens werden angewendet, um Winkel und Seiten rechtwinkliger Dreiecke zu bestimmen.cos(360°-(α-180°))=-x und sin(360°-(α-180°))=y.Der Sinus ist nur im rechtwinkligen Dreieck definiert als Gegenkathete geteilt durch Hypotenuse. (Ausführliche Informationen und Übungsmaterial zum Sinus im rechtwinkligen Dreieck findest du auf der Seite LEARNZEPT.de.) Der Sinussatz hingegen gilt in einem beliebigen Dreieck.
Den Kosinussatz kannst Du in einem beliebigen Dreieck anwenden, wenn Du eine Seite berechnen möchtest und die zwei anderen Seiten, sowie der davon eingeschlossene Winkel gegeben sind. Außerdem kannst Du ihn anwenden, wenn in einem Dreieck alle Seiten gegeben sind und Du einen Winkel berechnen möchtest.
Wann verwendet man den Tangens : Der Tangens wird mathematisch \tan(\alpha) abgekürzt. Neben dem Sinus und dem Kosinus gibt es auch noch den Tangens. Mit dem Tangens rechnest du, wenn du zwei der drei Größen, Winkel, Ankathete des Winkels und Gegenkathete des Winkels gegeben hast und die dritte Größe suchst.
Was berechnet man mit Sinus Kosinus und Tangens : Sinus, Kosinus und Tangens beschreiben das Verhältnis von Seitenlängen in einem rechtwinkligen Dreieck in Abhängigkeit von einem der spitzen Winkel. Sie sind folgendermaßen definiert. Dabei bezeichnet man als "Ankathete" die Kathete, die zusammen mit der Hypotenuse den Winkel α einschließt.
Wie groß ist der Sinus von 45 Grad
sin cos tan Tabelle
Winkel α im Gradmaß | sin(α) gerundet |
---|---|
45° (-315°) | 0,7071 |
60° (-300°) | 0,8660 |
75° (-285°) | 0,9659 |
90° (-270°) | 1,0000 |
Liegt der zum Punkt P gehörige Winkel α zwischen 0° und 360°, dann ist der zum Punkt P' gehörige Winkel 360° – α. Wegen x=cos(α) und y=sin(α) gilt dann: cos(360°-α)=x und sin(360°-α)=-y.Mit dem Kosinus kannst du rechnen, wenn du zwei der drei Größen, Winkel, Ankathete und Hypotenuse gegeben hast und die dritte suchst. Das Vorgehen ist also ähnlich wie beim Sinus, nur mit der Ankathete anstatt der Gegenkathete eines Winkels.
Was ist der cos von 45 : sin cos tan Tabelle
Winkel α im Gradmaß | cos(α) gerundet |
---|---|
30° (-330°) | 0,8660 |
45° (-315°) | 0,7071 |
60° (-300°) | 0,5000 |
75° (-285°) | 0,2588 |